Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 240
1.
J Korean Med Sci ; 38(45): e387, 2023 Nov 20.
Article En | MEDLINE | ID: mdl-37987109

Combined malonic and methylmalonic aciduria is a rare genetic disorder caused by ACSF3 biallelic variants that results in impaired protein and fat metabolism and the accumulation of malonic and methylmalonic acids. A 52-day-old infant with a fever and a history of possible meningitis during the neonatal period was hospitalized. Multiple lesions of necrotizing lymphadenitis with abscesses in the left inguinal area were treated by incision and drainage along with appropriate antibiotic therapy, which revealed a methicillin-resistant Staphylococcus aureus infection. At 6 months of age, the patient was admitted with anal abscesses. Due to the increased suspicion of primary immunodeficiency disease, genetic testing was conducted, which revealed ACSF3 biallelic variants inherited from both parents. Urine organic acid analysis revealed elevated levels of malonic and methylmalonic acids. At 29 months, the patient showed normal growth and development without any dietary modifications. He had occasional colds, but severe bacterial infections were absent. The prognosis suggests a benign disease course. Here, we present the first reported case of ACSF3 compound heterozygote variants in Korea.


Methicillin-Resistant Staphylococcus aureus , Primary Immunodeficiency Diseases , Infant , Infant, Newborn , Male , Humans , Abscess , Methicillin-Resistant Staphylococcus aureus/genetics , Methylmalonic Acid/metabolism
2.
Nutrients ; 15(15)2023 Jul 28.
Article En | MEDLINE | ID: mdl-37571294

Newborn screening (NBS) programs are effective measures of secondary prevention and have been successively extended. We aimed to evaluate NBS for methylmalonic acidurias, propionic acidemia, homocystinuria, remethylation disorders and neonatal vitamin B12 deficiency, and report on the identification of cofactor-responsive disease variants. This evaluation of the previously established combined multiple-tier NBS algorithm is part of the prospective pilot study "NGS2025" from August 2016 to September 2022. In 548,707 newborns, the combined algorithm was applied and led to positive NBS results in 458 of them. Overall, 166 newborns (prevalence 1: 3305) were confirmed (positive predictive value: 0.36); specifically, methylmalonic acidurias (N = 5), propionic acidemia (N = 4), remethylation disorders (N = 4), cystathionine beta-synthase (CBS) deficiency (N = 1) and neonatal vitamin B12 deficiency (N = 153). The majority of the identified newborns were asymptomatic at the time of the first NBS report (total: 161/166, inherited metabolic diseases: 9/14, vitamin B12 deficiency: 153/153). Three individuals were cofactor-responsive (methylmalonic acidurias: 2, CBS deficiency: 1), and could be treated by vitamin B12, vitamin B6 respectively, only. In conclusion, the combined NBS algorithm is technically feasible, allows the identification of attenuated and severe disease courses and can be considered to be evaluated for inclusion in national NBS panels.


Homocystinuria , Propionic Acidemia , Vitamin B 12 Deficiency , Humans , Infant, Newborn , Homocystinuria/diagnosis , Prospective Studies , Neonatal Screening/methods , Pilot Projects , Vitamin B 12 , Vitamin B 12 Deficiency/diagnosis , Phenotype , Methylmalonic Acid/metabolism , Vitamins
3.
J Inherit Metab Dis ; 46(3): 421-435, 2023 05.
Article En | MEDLINE | ID: mdl-36371683

Methylmalonyl-coenzyme A (CoA) mutase (MMUT)-type methylmalonic aciduria is a rare inherited metabolic disease caused by the loss of function of the MMUT enzyme. Patients develop symptoms resembling those of primary mitochondrial disorders, but the underlying causes of mitochondrial dysfunction remain unclear. Here, we examined environmental and genetic interactions in MMUT deficiency using a combination of computational modeling and cellular models to decipher pathways interacting with MMUT. Immortalized fibroblast (hTERT BJ5ta) MMUT-KO (MUTKO) clones displayed a mild mitochondrial impairment in standard glucose-based medium, but they did not to show increased reliance on respiratory metabolism nor reduced growth or viability. Consistently, our modeling predicted MUTKO specific growth phenotypes only for lower extracellular glutamine concentrations. Indeed, two of three MMUT-deficient BJ5ta cell lines showed a reduced viability in glutamine-free medium. Further, growth on 183 different carbon and nitrogen substrates identified increased NADH (nicotinamide adenine dinucleotide) metabolism of BJ5ta and HEK293 MUTKO cells compared with controls on purine- and glutamine-based substrates. With this knowledge, our modeling predicted 13 reactions interacting with MMUT that potentiate an effect on growth, primarily those of secondary oxidation of propionyl-CoA, oxidative phosphorylation and oxygen diffusion. Of these, we validated 3-hydroxyisobutytyl-CoA hydrolase (HIBCH) in the secondary propionyl-CoA oxidation pathway. Altogether, these results suggest compensation for the loss of MMUT function by increasing anaplerosis through glutamine or by diverting flux away from MMUT through the secondary propionyl-CoA oxidation pathway, which may have therapeutic relevance.


Amino Acid Metabolism, Inborn Errors , Mitochondrial Diseases , Humans , HEK293 Cells , Amino Acid Metabolism, Inborn Errors/diagnosis , Mitochondrial Diseases/metabolism , Methylmalonyl-CoA Mutase , Methylmalonic Acid/metabolism
4.
Nat Commun ; 13(1): 6239, 2022 10 20.
Article En | MEDLINE | ID: mdl-36266345

The systemic metabolic shifts that occur during aging and the local metabolic alterations of a tumor, its stroma and their communication cooperate to establish a unique tumor microenvironment (TME) fostering cancer progression. Here, we show that methylmalonic acid (MMA), an aging-increased oncometabolite also produced by aggressive cancer cells, activates fibroblasts in the TME, which reciprocally secrete IL-6 loaded extracellular vesicles (EVs) that drive cancer progression, drug resistance and metastasis. The cancer-associated fibroblast (CAF)-released EV cargo is modified as a result of reactive oxygen species (ROS) generation and activation of the canonical and noncanonical TGFß signaling pathways. EV-associated IL-6 functions as a stroma-tumor messenger, activating the JAK/STAT3 and TGFß signaling pathways in tumor cells and promoting pro-aggressive behaviors. Our findings define the role of MMA in CAF activation to drive metastatic reprogramming, unveiling potential therapeutic avenues to target MMA at the nexus of aging, the tumor microenvironment and metastasis.


Cancer-Associated Fibroblasts , Extracellular Vesicles , Neoplasms , Humans , Cancer-Associated Fibroblasts/metabolism , Reactive Oxygen Species/metabolism , Methylmalonic Acid/metabolism , Interleukin-6/metabolism , Tumor Microenvironment , Neoplasms/pathology , Extracellular Vesicles/metabolism , Transforming Growth Factor beta/metabolism
5.
Mol Genet Metab ; 137(1-2): 1-8, 2022.
Article En | MEDLINE | ID: mdl-35868241

Methylmalonic acidemia (MMA) is a rare and severe inherited metabolic disease typically caused by mutations of the methylmalonyl-CoA mutase (MMUT) gene. Despite medical management, patients with MMA experience frequent episodes of metabolic instability, severe morbidity, and early mortality. In several preclinical studies, systemic gene therapy has demonstrated impressive improvement in biochemical and clinical phenotypes of MMA murine models. One approach uses a promoterless adeno-associated viral (AAV) vector that relies upon homologous recombination to achieve site-specific in vivo gene addition of MMUT into the last coding exon of albumin (Alb), generating a fused Alb-MMUT transcript after successful editing. We have previously demonstrated that nuclease-free AAV mediated Alb editing could effectively treat MMA mice in the neonatal period and noted that hepatocytes had a growth advantage after correction. Here, we use a transgenic knock-out mouse model of MMA that recapitulates severe clinical and biochemical symptoms to assess the benefits of Alb editing in juvenile animals. As was first noted in the neonatal gene therapy studies, we observe that gene edited hepatocytes in the MMA mice treated as juveniles exhibit a growth advantage, which allows them to repopulate the liver slowly but dramatically by 8-10 months post treatment, and subsequently manifest a biochemical and enzymatic response. In conclusion, our results suggest that the benefit of AAV mediated nuclease-free gene editing of the Alb locus to treat MMA could potentially be therapeutic for older patients.


Amino Acid Metabolism, Inborn Errors , Methylmalonyl-CoA Mutase , Mice , Animals , Methylmalonyl-CoA Mutase/genetics , Methylmalonyl-CoA Mutase/metabolism , Gene Editing , Dependovirus/genetics , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/therapy , Amino Acid Metabolism, Inborn Errors/metabolism , Mice, Knockout , Liver/metabolism , Hepatocytes/metabolism , Albumins/genetics , Albumins/metabolism , Methylmalonic Acid/metabolism
6.
Oxid Med Cell Longev ; 2022: 7043883, 2022.
Article En | MEDLINE | ID: mdl-35656023

Methylmalonic acid (MMA) can act as a diagnosis of hereditary methylmalonic acidemia and assess the status of vitamin B12. Moreover, as a new potential biomarker, it has been widely reported to be associated with the progression and prognosis of chronic diseases such as cardiovascular events, renal insufficiency, cognitive impairment, and cancer. MMA accumulation may cause oxidative stress and impair mitochondrial function, disrupt cellular energy metabolism, and trigger cell death. This review primarily focuses on the mechanisms and epidemiology or progression in the clinical study on MMA.


Amino Acid Metabolism, Inborn Errors , Methylmalonic Acid , Amino Acid Metabolism, Inborn Errors/metabolism , Humans , Methylmalonic Acid/metabolism , Mitochondria/metabolism , Oxidative Stress , Vitamin B 12 Deficiency
7.
Nat Metab ; 4(4): 435-443, 2022 04.
Article En | MEDLINE | ID: mdl-35361954

The alteration of metabolic pathways is a critical strategy for cancer cells to attain the traits necessary for metastasis in disease progression. Here, we find that dysregulation of propionate metabolism produces a pro-aggressive signature in breast and lung cancer cells, increasing their metastatic potential. This occurs through the downregulation of methylmalonyl coenzyme A epimerase (MCEE), mediated by an extracellular signal-regulated kinase 2-driven transcription factor Sp1/early growth response protein 1 transcriptional switch driven by metastatic signalling at its promoter level. The loss of MCEE results in reduced propionate-driven anaplerotic flux and intracellular and intratumoral accumulation of methylmalonic acid, a by-product of propionate metabolism that promotes cancer cell invasiveness. Altogether, we present a previously uncharacterized dysregulation of propionate metabolism as an important contributor to cancer and a valuable potential target in the therapeutic treatment of metastatic carcinomas.


Neoplasms , Propionates , Humans , Methylmalonic Acid/metabolism , Phenotype , Propionates/pharmacology , Signal Transduction
8.
Metab Brain Dis ; 37(5): 1317-1335, 2022 06.
Article En | MEDLINE | ID: mdl-35348993

Methylmalonic acidemia (MMA) due to methylmalonyl-CoA mutase deficiency (OMIM #251,000) is an autosomal recessive disorder of organic acid metabolism associated with life-threatening acute metabolic decompensations and significant neuropsychological deficits. "Isolated" MMA refers to the presence of excess methylmalonic acid without homocysteine elevation. Belonging to this class of disorders are those that involve complete deficiency (mut0) and partial deficiency (mut-) of the methylmalonyl-CoA mutase enzyme and other disorders causing excess methylmalonic acid excretion. These other disorders include enzymatic subtypes related to cobalamin A defect (cblA) (OMIM #25,110), cobalamin B defect (cblB) (OMIM #251,110) and related conditions. Neuropsychological attributes associated with isolated MMA have become more relevant as survival rates increased following improved diagnostic and treatment strategies. Children with this disorder still are at risk for developmental delay, cognitive difficulties and progressive declines in functioning. Mean IQ for all types apart from cblA defect enzymatic subtype is rarely above 85 and much lower for mut0 enzymatic subtype. Identifying psychological domains responsive to improvements in biochemical status is important. This review suggests that processing speed, working memory, language, attention, and quality of life may be sensitive to fluctuations in metabolite levels while IQ and motor skills may be less amenable to change. Due to slower developmental trajectories, Growth Scale Values, Projected Retained Ability Scores and other indices of change need to be incorporated into clinical trial study protocols. Neuropsychologists are uniquely qualified to provide a differentiated picture of cognitive, behavioral and emotional consequences of MMA and analyze benefits or shortcomings of novel treatments.


Amino Acid Metabolism, Inborn Errors , Methylmalonyl-CoA Mutase , Amino Acid Metabolism, Inborn Errors/diagnosis , Amino Acid Metabolism, Inborn Errors/therapy , Child , Humans , Methylmalonic Acid/metabolism , Methylmalonyl-CoA Mutase/genetics , Mutation , Quality of Life , Vitamin B 12
9.
Biochim Biophys Acta Mol Basis Dis ; 1867(10): 166201, 2021 10 01.
Article En | MEDLINE | ID: mdl-34147638

Combined methylmalonic aciduria with homocystinuria (cblC type) is a rare disease caused by mutations in the MMACHC gene. MMACHC encodes an enzyme crucial for intracellular vitamin B12 metabolism, leading to the accumulation of toxic metabolites e.g. methylmalonic acid (MMA) and homocysteine (Hcy), and secondary disturbances in folate and one-carbon metabolism when not fully functional. Patients with cblC deficiency often present in the neonatal or early childhood period with a severe multisystem pathology, which comprises a broad spectrum of treatment-resistant ophthalmological phenotypes, including retinal degeneration, impaired vision, and vascular changes. To examine the potential function of MMACHC in the retina and how its loss may impact disease, we performed gene expression studies in human and mouse, which showed that local expression of MMACHC in the retina and retinal pigment epithelium is relatively stable over time. To study whether functional MMACHC is required for retinal function and tissue integrity, we generated a transgenic mouse lacking Mmachc expression in cells of the peripheral retina. Characterization of this mouse revealed accumulation of cblC disease related metabolites, including MMA and the folate-dependent purine synthesis intermediates AICA-riboside and SAICA-riboside in the retina. Nevertheless, fundus appearance, morphology, vasculature, and cellular composition of the retina, as well as ocular function, remained normal in mice up to 6 or 12 months of age. Our data indicates that peripheral retinal neurons do not require intrinsic expression of Mmachc for survival and function and questions whether a local MMACHC deficiency is responsible for the retinal phenotypes in patients.


Oxidoreductases/metabolism , Retina/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Amino Acid Metabolism, Inborn Errors/metabolism , Animals , Female , Homocysteine/metabolism , Homocystinuria/metabolism , Humans , Male , Methylmalonic Acid/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged , Mutation/genetics , Oxidoreductases/genetics , Phenotype , Retinal Degeneration/genetics , Retinal Degeneration/metabolism , Vitamin B 12/metabolism , Young Adult
10.
Am J Clin Nutr ; 114(2): 578-587, 2021 08 02.
Article En | MEDLINE | ID: mdl-33964857

BACKGROUND: Elevated plasma homocysteine has been found to be associated with an increased risk of osteoporosis, especially hip and vertebral fractures. The plasma concentration of homocysteine is dependent on the activities of several B vitamin-dependent enzymes, such as methylenetetrahydrofolate reductase (MTHFR), methionine synthase (MTR), methionine synthase reductase (MTRR), and cystathionine ß-synthase (CBS). OBJECTIVES: We investigated whether genetic variants in some of the genes involved in 1 carbon metabolism modify the association of B vitamin-related measures with bone mineral density (BMD) and strength. METHODS: We measured several B vitamins and biomarkers in participants of the Framingham Offspring Study, and performed analyses of methylmalonic acid (MMA) continuously and <210 nmol/L; pyridoxal-5'-phosphate; vitamin B-12 continuously and ≥258 pmol/L; and folate. The outcomes of interest included areal and volumetric BMD, measured by DXA and quantitative computed tomography (QCT), respectively. We evaluated associations between the bone measures and interactions of single nucleotide polymorphism with a B vitamin or biomarker in Framingham participants (n = 4310 for DXA and n = 3127 for QCT). For analysis of DXA, we validated the association results in the B-PROOF cohort (n = 1072). Bonferroni-corrected locus-wide significant thresholds were defined to account for multiple testing. RESULTS: The interactions between rs2274976 and vitamin B-12 and rs34671784 and MMA <210 nmol/L were associated with lumbar spine BMD, and the interaction between rs6586281 and vitamin B-12 ≥258 pmol/L was associated with femoral neck BMD. For QCT-derived traits, 62 interactions between genetic variants and B vitamins and biomarkers were identified. CONCLUSIONS: Some genetic variants in the 1-carbon methylation pathway modify the association of B vitamin and biomarker concentrations with bone density and strength.  These interactions require further replication and functional validation for a mechanistic understanding of the role of the 1-carbon metabolism pathway on BMD and risks of fracture.


Bone Density/physiology , Genetic Variation , Methylmalonic Acid/blood , Vitamin B Complex/blood , Adolescent , Adult , Aged , Bone Density/genetics , Child , Child, Preschool , Female , Folic Acid/blood , Folic Acid/metabolism , Genotype , Humans , Male , Methylmalonic Acid/metabolism , Middle Aged , Vitamin B 12/blood , Vitamin B 12/metabolism , Vitamin B 6/blood , Vitamin B 6/metabolism , Vitamin B Complex/metabolism , Young Adult
11.
Am J Med Genet A ; 185(6): 1870-1874, 2021 06.
Article En | MEDLINE | ID: mdl-33729671

Cobalamin J disease (CblJ) is an ultra-rare autosomal recessive disorder of intracellular cobalamin metabolism associated with combined methylmalonic acidemia and homocystinuria. It is caused by pathogenic variants in ABCD4, which encodes an ATP-binding cassette (ABC) transporter that affects the lysosomal release of cobalamin (Cbl) into the cytoplasm. Only six cases of CblJ have been reported in the literature. Described clinical features include feeding difficulties, failure to thrive, hypotonia, seizures, developmental delay, and hematological abnormalities. Information on clinical outcomes is extremely limited, and no cases of presymptomatic diagnosis have been reported. We describe a now 17-month-old male with CblJ detected by newborn screening and confirmed by biochemical, molecular, and complementation studies. With early detection and initiation of treatment, this patient has remained asymptomatic with normal growth parameters and neurodevelopmental function. To the best of our knowledge, this report represents the first asymptomatic and neurotypical patient with CblJ.


ATP-Binding Cassette Transporters/genetics , Amino Acid Metabolism, Inborn Errors/diagnosis , Amino Acid Metabolism, Inborn Errors/genetics , Vitamin B 12 Deficiency/diagnosis , Vitamin B 12/genetics , Amino Acid Metabolism, Inborn Errors/pathology , Female , Genetic Predisposition to Disease , Homocystinuria/diagnosis , Homocystinuria/genetics , Homocystinuria/pathology , Humans , Infant , Infant, Newborn , Male , Methylmalonic Acid/metabolism , Mutation/genetics , Neonatal Screening , Vitamin B 12/metabolism , Vitamin B 12 Deficiency/genetics , Vitamin B 12 Deficiency/pathology
12.
Am J Clin Nutr ; 113(5): 1157-1167, 2021 05 08.
Article En | MEDLINE | ID: mdl-33693455

BACKGROUND: The association of moderate hyperhomocysteinemia (HHcy) (15-30 µmol/L) with cardiovascular diseases (CVD) has been challenged by the lack of benefit of vitamin supplementation to lowering homocysteine. Consequently, the results of interventional studies have confused the debate regarding the management of patients with intermediate/severe HHcy. OBJECTIVE: We sought to evaluate the association of intermediate (30-100 µmol/L) and severe (>100 µmol/L) HHcy related to vitamin deficiencies and/or inherited disorders with CVD outcomes. METHODS: We performed a retrospective cross-sectional study on consecutive patients who underwent a homocysteine assay in a French University Regional Hospital Center. Patients with CVD outcomes were assessed for vitamin B12, folate, Hcy, methylmalonic acid, and next-generation clinical exome sequencing. RESULTS: We evaluated 165 patients hospitalized for thromboembolic and other cardiovascular (CV) manifestations among 1006 patients consecutively recruited. Among them, 84% (138/165) had Hcy >30 µmol/L, 27% Hcy >50 µmol/L (44/165) and 3% Hcy >100 µmol/L (5/165). HHcy was related to vitamin B12 and/or folate deficiency in 55% (87/165), mutations in one or more genes of one-carbon and/or vitamin B12 metabolisms in 11% (19/165), and severe renal failure in 15% (21/141) of the studied patients. HHcy was the single vascular risk retrieved in almost 9% (15/165) of patients. Sixty % (101/165) of patients received a supplementation to treat HHcy, with a significant decrease in median Hcy from 41 to 17 µmol/L (IQR: 33.6-60.4 compared with 12.1-28). No recurrence of thromboembolic manifestations was observed after supplementation and antithrombotic treatment of patients who had HHcy as a single risk, after ∼4 y of follow-up. CONCLUSION: The high frequency of intermediate/severe HHcy differs from the frequent moderate HHcy reported in previous observational studies of patients with pre-existing CVD. Our study points out the importance of diagnosing and treating nutritional deficiencies and inherited disorders to reverse intermediate/severe HHcy associated with CVD outcomes.


Cardiovascular Diseases/etiology , Folic Acid Deficiency/complications , Folic Acid/therapeutic use , Hyperhomocysteinemia/complications , Metabolism, Inborn Errors/blood , Adult , Child, Preschool , Cross-Sectional Studies , Female , Homocysteine/blood , Homocysteine/metabolism , Humans , Male , Metabolism, Inborn Errors/genetics , Metabolism, Inborn Errors/metabolism , Methylmalonic Acid/blood , Methylmalonic Acid/metabolism , Middle Aged , Retrospective Studies , Vitamin B 12/blood , Vitamin B 12/metabolism
13.
Amino Acids ; 53(2): 253-264, 2021 Feb.
Article En | MEDLINE | ID: mdl-33515116

Cobalamin C defect is caused by pathogenic variants in the MMACHC gene leading to impaired conversion of dietary vitamin B12 into methylcobalamin and adenosylcobalamin. Variants in the MMACHC gene cause accumulation of methylmalonic acid and homocysteine along with decreased methionine synthesis. The spectrum of MMACHC gene variants differs in various populations. A total of 19 North Indian children (age 0-18 years) with elevated methylmalonic acid and homocysteine were included in the study, and their DNA samples were subjected to Sanger sequencing of coding exons with flanking intronic regions of MMACHC gene. The genetic analysis resulted in the identification of a common pathogenic nonsense mutation, c.394C > T (R132*) in 85.7% of the unrelated cases with suspected cobalamin C defect. Two other known mutations c.347T > C (7%) and c.316G > A were also detected. Plasma homocysteine was significantly elevated (> 100 µmol/L) in 75% of the cases and methionine was decreased in 81% of the cases. Propionyl (C3)-carnitine, the primary marker for cobalamin C defect, was found to be elevated in only 43.75% of cases. However, the secondary markers such as C3/C2 and C3/C16 ratios were elevated in 87.5% and 100% of the cases, respectively. Neurological manifestations were the most common in our cohort. Our findings of the high frequency of a single MMACHC R132* mutation in cases with combined homocystinuria and methylmalonic aciduria may be proven helpful in designing a cost-effective and time-saving diagnostic strategy for resource-constraint settings. Since the R132* mutation is located near the last exon-exon junction, this is a potential target for the read-through therapeutics.


Oxidoreductases/genetics , Point Mutation , Vitamin B 12 Deficiency/genetics , Vitamin B 12/metabolism , Adolescent , Child , Child, Preschool , Exons , Female , Homocysteine/metabolism , Humans , India , Infant , Infant, Newborn , Male , Methylmalonic Acid/metabolism , Oxidoreductases/metabolism , Vitamin B 12/analogs & derivatives , Vitamin B 12 Deficiency/metabolism
14.
Sci Rep ; 11(1): 1940, 2021 01 21.
Article En | MEDLINE | ID: mdl-33479439

Metformin-treated diabetics (MTD) showed a decrease in cobalamin, a rise in homocysteine, and methylmalonic acid, leading to accentuated diabetic peripheral neuropathy (DPN). This study aimed to determine whether or not metformin is a risk factor for DPN. We compared MTD to non-metformin-treated diabetics (NMTD) clinically using the Toronto Clinical Scoring System (TCSS), laboratory (methylmalonic acid, cobalamin, and homocysteine), and electrophysiological studies. Median homocysteine and methylmalonic acid levels in MTD vs. NMTD were 15.3 vs. 9.6 µmol/l; P < 0.001 and 0.25 vs. 0.13 µmol/l; P = 0.02, respectively with high statistical significance in MTD. There was a significantly lower plasma level of cobalamin in MTD than NMTD. Spearman's correlation showed a significant negative correlation between cobalamin and increased dose of metformin and a significant positive correlation between TCSS and increased dose of metformin. Logistic regression analysis showed that MTD had significantly longer metformin use duration, higher metformin dose > 2 g, higher TCSS, lower plasma cobalamin, and significant higher homocysteine. Diabetics treated with metformin for prolonged duration and higher doses were associated with lower cobalamin and more severe DPN.


Diabetes Mellitus, Type 2/drug therapy , Diabetic Neuropathies/drug therapy , Metformin/administration & dosage , Peripheral Nervous System Diseases/drug therapy , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/pathology , Diabetic Neuropathies/blood , Diabetic Neuropathies/complications , Diabetic Neuropathies/pathology , Female , Homocysteine/blood , Humans , Male , Metformin/adverse effects , Methylmalonic Acid/metabolism , Middle Aged , Peripheral Nervous System Diseases/blood , Peripheral Nervous System Diseases/complications , Peripheral Nervous System Diseases/pathology , Risk Factors , Vitamin B 12/blood
15.
Article En | MEDLINE | ID: mdl-33454435

OBJECTIVE: Discovery of specific markers that reflect altered hepatic fatty acid oxidation could help to detect an individual's risk of fatty liver, type 2 diabetes and cardiovascular disease at an early stage. Lipid and protein metabolism are intimately linked, but our understanding of this crosstalk remains limited. METHODS: In male Wistar rats, we used synthetic fatty acid analogues (3-thia fatty acids) as a tool to induce hepatic fatty acid oxidation and mitochondrial biogenesis, to gain new insight into the link between fatty acid oxidation, amino acid metabolism and TCA cycle-related intermediate metabolites in liver and plasma. RESULTS: Rats treated with 3-thia fatty acids had 3-fold higher hepatic, but not adipose and skeletal muscle, expression of the thioesterase 3-hydroxyisobutyryl-CoA hydrolase (Hibch), which controls the formation of 3-hydroxyisobutyrate (3-HIB) in the valine degradation pathway. Consequently, 3-thia fatty acid-stimulated hepatic fatty acid oxidation and ketogenesis was accompanied by decreased plasma 3-HIB and increased methylmalonic acid (MMA) concentrations further downstream in BCAA catabolism. The higher plasma MMA corresponded to higher MMA-CoA hydrolase activity and hepatic expression of GTP-specific succinyl-CoA synthase (Suclg2) and succinate dehydrogenase (Sdhb), and lower MMA-CoA mutase activity. Plasma 3-HIB correlated positively to plasma and hepatic concentrations of TAG, plasma total fatty acids, plasma NEFA and insulin/glucose ratio, while the reverse correlations were seen for MMA. CONCLUSION: Our study provides new insight into TCA cycle-related metabolic changes associated with altered hepatic fatty acid flux, and identifies 3-HIB and MMA as novel circulating markers reflective of mitochondrial ß-oxidation in male Wistar rats.


Fatty Acids/metabolism , Hydroxybutyrates/blood , Methylmalonic Acid/blood , Mitochondria, Liver/metabolism , Animals , Hydroxybutyrates/metabolism , Insulin Resistance , Male , Methylmalonic Acid/metabolism , Oxidation-Reduction , Rats, Wistar
16.
J Inherit Metab Dis ; 44(1): 9-21, 2021 01.
Article En | MEDLINE | ID: mdl-32412122

Organic acidurias (OADs) comprise a biochemically defined group of inherited metabolic diseases. Increasing awareness, reliable diagnostic work-up, newborn screening programs for some OADs, optimized neonatal and intensive care, and the development of evidence-based recommendations have improved neonatal survival and short-term outcome of affected individuals. However, chronic progression of organ dysfunction in an aging patient population cannot be reliably prevented with traditional therapeutic measures. Evidence is increasing that disease progression might be best explained by mitochondrial dysfunction. Previous studies have demonstrated that some toxic metabolites target mitochondrial proteins inducing synergistic bioenergetic impairment. Although these potentially reversible mechanisms help to understand the development of acute metabolic decompensations during catabolic state, they currently cannot completely explain disease progression with age. Recent studies identified unbalanced autophagy as a novel mechanism in the renal pathology of methylmalonic aciduria, resulting in impaired quality control of organelles, mitochondrial aging and, subsequently, progressive organ dysfunction. In addition, the discovery of post-translational short-chain lysine acylation of histones and mitochondrial enzymes helps to understand how intracellular key metabolites modulate gene expression and enzyme function. While acylation is considered an important mechanism for metabolic adaptation, the chronic accumulation of potential substrates of short-chain lysine acylation in inherited metabolic diseases might exert the opposite effect, in the long run. Recently, changed glutarylation patterns of mitochondrial proteins have been demonstrated in glutaric aciduria type 1. These new insights might bridge the gap between natural history and pathophysiology in OADs, and their exploitation for the development of targeted therapies seems promising.


Amino Acid Metabolism, Inborn Errors/diagnosis , Amino Acid Metabolism, Inborn Errors/therapy , Amino Acid Metabolism, Inborn Errors/metabolism , Amino Acid Metabolism, Inborn Errors/physiopathology , Animals , Brain/metabolism , Brain/pathology , Brain Diseases, Metabolic, Inborn/metabolism , Brain Diseases, Metabolic, Inborn/pathology , Energy Metabolism , Humans , Infant, Newborn , Methylmalonic Acid/metabolism , Neonatal Screening
17.
BMC Med ; 18(1): 380, 2020 12 10.
Article En | MEDLINE | ID: mdl-33298054

BACKGROUND: Methylmalonic acid (MMA) is best known for its use as a functional marker of vitamin B12 deficiency. However, MMA concentrations not only depend on adequate vitamin B12 status, but also relate to renal function and endogenous production of propionic acid. Hence, we aimed to investigate to what extent variation in MMA levels is explained by vitamin B12 and eGFR and whether MMA levels are associated with mortality if vitamin B12 and eGFR are taken into account. METHODS: A total of 1533 individuals (aged 60-75 years, 50% male) were included from the Lifelines Cohort and Biobank Study. Individuals were included between 2006 and 2013, and the total follow-up time was 8.5 years. RESULTS: Median [IQR] age of the study population was 65 [62-69] years, 50% was male. At baseline, median MMA concentration was 170 [138-216] nmol/L, vitamin B12 290 [224-362] pmol/L, and eGFR 84 [74-91] mL/min/1.73 m2. Log2 vitamin B12, log2 eGFR, age, and sex were significantly associated with log2 MMA in multivariable linear regression analyses (model R2 = 0.22). After a total follow-up time of 8.5 years, 72 individuals had died. Log2 MMA levels were significantly associated with mortality (hazard ratio [HR] 1.67 [95% CI 1.25-2.22], P < 0.001). Moreover, we found a significant interaction between MMA and eGFR with respect to mortality (Pinteraction < 0.001). CONCLUSIONS: Only 22% of variation in MMA levels was explained by vitamin B12, eGFR, age, and sex, indicating that a large part of variation in MMA levels is attributable to other factors (e.g., catabolism, dietary components, or gut microbial production). Higher MMA levels are associated with an increased risk for mortality, independent of vitamin B12, eGFR, and sex. This association was more pronounced in individuals with impaired renal function.


Kidney Function Tests/methods , Kidney/pathology , Methylmalonic Acid/metabolism , Mortality/trends , Vitamin B 12 Deficiency/complications , Vitamin B 12/therapeutic use , Aged , Female , Humans , Male , Middle Aged , Prospective Studies , Vitamin B 12/pharmacology
18.
Nature ; 585(7824): 283-287, 2020 09.
Article En | MEDLINE | ID: mdl-32814897

The risk of cancer and associated mortality increases substantially in humans from the age of 65 years onwards1-6. Nonetheless, our understanding of the complex relationship between age and cancer is still in its infancy2,3,7,8. For decades, this link has largely been attributed to increased exposure time to mutagens in older individuals. However, this view does not account for the established role of diet, exercise and small molecules that target the pace of metabolic ageing9-12. Here we show that metabolic alterations that occur with age can produce a systemic environment that favours the progression and aggressiveness of tumours. Specifically, we show that methylmalonic acid (MMA), a by-product of propionate metabolism, is upregulated in the serum of older people and functions as a mediator of tumour progression. We traced this to the ability of MMA to induce SOX4 expression and consequently to elicit transcriptional reprogramming that can endow cancer cells with aggressive properties. Thus, the accumulation of MMA represents a link between ageing and cancer progression, suggesting that MMA is a promising therapeutic target for advanced carcinomas.


Aging/metabolism , Disease Progression , Methylmalonic Acid/metabolism , Neoplasm Invasiveness , Neoplasm Metastasis , Neoplasms/pathology , Adult , Aged , Aging/blood , Aging/genetics , Animals , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Methylmalonic Acid/blood , Mice , Middle Aged , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Neoplasm Metastasis/genetics , Neoplasm Metastasis/pathology , Neoplasms/blood , Neoplasms/genetics , SOXC Transcription Factors/metabolism , Signal Transduction , Transcriptome/genetics , Transforming Growth Factor beta/metabolism
19.
Mol Genet Metab ; 130(3): 183-196, 2020 07.
Article En | MEDLINE | ID: mdl-32451238

Propionic acidemia (PA) and methylmalonic acidemia (MMA) are autosomal recessive disorders of propionyl-CoA (P-CoA) catabolism, which are caused by a deficiency in the enzyme propionyl-CoA carboxylase or the enzyme methylmalonyl-CoA (MM-CoA) mutase, respectively. The functional consequence of PA or MMA is the inability to catabolize P-CoA to MM-CoA or MM-CoA to succinyl-CoA, resulting in the accumulation of P-CoA and other metabolic intermediates, such as propionylcarnitine (C3), 3-hydroxypropionic acid, methylcitric acid (MCA), and methylmalonic acid (only in MMA). P-CoA and its metabolic intermediates, at high concentrations found in PA and MMA, inhibit enzymes in the first steps of the urea cycle as well as enzymes in the tricarboxylic acid (TCA) cycle, causing a reduction in mitochondrial energy production. We previously showed that metabolic defects of PA could be recapitulated using PA patient-derived primary hepatocytes in a novel organotypic system. Here, we sought to investigate whether treatment of normal human primary hepatocytes with propionate would recapitulate some of the biochemical features of PA and MMA in the same platform. We found that high levels of propionate resulted in high levels of intracellular P-CoA in normal hepatocytes. Analysis of TCA cycle intermediates by GC-MS/MS indicated that propionate may inhibit enzymes of the TCA cycle as shown in PA, but is also incorporated in the TCA cycle, which does not occur in PA. To better recapitulate the disease phenotype, we obtained hepatocytes derived from livers of PA and MMA patients. We characterized the PA and MMA donors by measuring key proximal biomarkers, including P-CoA, MM-CoA, as well as clinical biomarkers propionylcarnitine-to-acetylcarnitine ratios (C3/C2), MCA, and methylmalonic acid. Additionally, we used isotopically-labeled amino acids to investigate the contribution of relevant amino acids to production of P-CoA in models of metabolic stability or acute metabolic crisis. As observed clinically, we demonstrated that the isoleucine and valine catabolism pathways are the greatest sources of P-CoA in PA and MMA donor cells and that each donor showed differential sensitivity to isoleucine and valine. We also studied the effects of disodium citrate, an anaplerotic therapy, which resulted in a significant increase in the absolute concentration of TCA cycle intermediates, which is in agreement with the benefit observed clinically. Our human cell-based PA and MMA disease models can inform preclinical drug discovery and development where mouse models of these diseases are inaccurate, particularly in well-described species differences in branched-chain amino acid catabolism.


Amino Acid Metabolism, Inborn Errors/pathology , Amino Acids/metabolism , Citrates/metabolism , Citric Acid Cycle , Hepatocytes/pathology , Methylmalonic Acid/metabolism , Propionic Acidemia/pathology , Amino Acid Metabolism, Inborn Errors/drug therapy , Amino Acid Metabolism, Inborn Errors/metabolism , Case-Control Studies , Cells, Cultured , Citric Acid/pharmacology , Hepatocytes/metabolism , Humans , In Vitro Techniques , Methylmalonyl-CoA Decarboxylase/metabolism , Methylmalonyl-CoA Mutase/deficiency , Propionates/pharmacology , Propionic Acidemia/drug therapy , Propionic Acidemia/metabolism
20.
Dis Markers ; 2020: 7468506, 2020.
Article En | MEDLINE | ID: mdl-32089757

Four biomarkers are commonly employed to diagnose B12 deficiency: vitamin B12 (B12), holotranscobalamin (HoloTC), methylmalonic acid (MMA), and homocysteine (Hcy). 4cB12, a combined index of the B12 status, has been suggested to improve the recognition of B12 deficiency. We aimed to evaluate the four different markers for detecting B12 deficiency, as determined by 4cB12. Within a large, mixed patient population, 11,833 samples had concurrent measurements of B12, HoloTC, MMA, and Hcy. 4cB12 was calculated according to the methods described by Fedosov. Diagnostic cutoffs as well as diagnostic accuracy for the detection of B12 deficiency were assessed with receiver operating characteristic (ROC) analysis. The median age was 56 years, and women accounted for 58.8% of the samples. Overall, the area under the curve (AUC) for the detection of subclinical B12 deficiency was highest for HoloTC (0.92), followed by MMA (0.91), B12 (0.9) and Hcy (0.78). The difference between HoloTC and B12 was driven by a significantly higher AUC for HoloTC (0.93) than for B12 (0.89), MMA (0.91), and Hcy in women 50 years and older (0.79; p < 0.05 for all). In the detection of subclinical B12 deficiency, there were no significant differences in the AUCs of HoloTC, B12, and MMA among men and women <50 years. In conclusion, in women < 50 years and in men, HoloTC, MMA, or Hcy do not appear superior to B12 for the detection of B12 deficiency. For women 50 years and older, HoloTC seems to be the preferred first-line marker for the detection of subclinical B12 deficiency.


Homocysteine/metabolism , Methylmalonic Acid/metabolism , Transcobalamins/metabolism , Vitamin B 12 Deficiency/diagnosis , Vitamin B 12/metabolism , Adult , Aged , Biomarkers/metabolism , Cohort Studies , Female , Humans , Male , Middle Aged , ROC Curve , Retrospective Studies , Sensitivity and Specificity , Vitamin B 12 Deficiency/metabolism
...